Design and Optimisation of Aluminium Windows and Flanges for a High-Pressure Threshold Cherenkov Counter

M. Lino dos Santos, C. Arregui, N. Charitonidis, L. Dassa, S. Evrard, S. Girod, C. Pochet, A-E Rahmoun, O. Sacristan De Frutos, F. Sanchez Galan
CERN 1211 Geneva 23, Switzerland

1st EPERC International Conference - Pressure Equipment Innovation and Safety, 1-3 April 2019

CERN (European Organization for Nuclear Research)

Neutrino platform

1st EPERC International Conference 1-3 April 2019

Neutrino platform

Threshold Cherenkov Counters (XCET)

1st EPERC International Conference 1-3 April 2019

Threshold Cherenkov Counters (XCET)

XCET Pressure vessel characteristics:

Capacity:190 L

Gas: CO2, R134, N,

Op. pressure:5 bar

■ Op. temperature: ~20°C

Pressure cycles: >500

The DN159 group of flanges/window is the focus of the design and validation study conducted

Thin aluminium windows

However a pressure of 5bar inside the XCET must be guaranteed within reasonable safety limits!

- Particles passing through a material are affected by: Nuclear collision and Radiation lengths
- Factors dependent on the particle specie

VLE beam: mixed particle beam

Aluminium is the material that satisfy in the best way all the requirements

leading to intensity loss and multiple scattering

Design validation strategy

Design validation strategy

Validation by Annex T \rightarrow Burst test up to 25bar (5 x op. pressure)

Design based on Annex C → Window designed to withstand 25bar

Failure criteria: yield/1.5

Expected high safety factor \rightarrow 5x op. pressure + plastic deformation

Ensure validation

Does the method allow a design (thickness) compliant with the physicist specifications?

How big the safety factor added? Pressure for plastic deformation? Benchmark FEA simulations?

Digital Image Correlation (DIC)

Design validation strategy

Digital Image correlation (DIC) → For FEA benchmarking

- Optical non-contact technique
- Measurement: shape, displacement, strain
- Hi-resolutions measurements
- Covers of a large surface area

For our scope...

- Identification of areas that lead to failure
- Elastic to plastic deformation transition
- FEA benchmarking

1st EPERC International Conference 1-3 April 2019

Source: Bing Pan 2018 Meas. Sci. Technol. 29 0820

Flanges/windows design

Two different designs were proposed:

Existing design at CERN

No official design validation existing for the required operational pressures

New design

Driven by preliminary FEA simulations

Windows design parameters Existing New Thickness [mm] 0.85 0.8 to 1.7 Pressurized Diameter [mm] 188 188 Operational Pressure 5 [bar] 5 Windows Material 7075-T6 7075-T6 Flange Material 6082-T6 6082-T6 Fab. Method Metal Spinning Machining

Flanges/windows design

Flanges/window validation

Experiment set up

Test subject preparation:

- Dimensional control
- Bolted connections (VDI2230)
- Window painted with a stochastic pattern

Pressurization:

- Hydro pneumatic pump: 0.25bar/s
- Two pressure sensors
 - Direct reading
 - DIC data/pressure sync.

DIC set up:

- DANTEC Q-400 3D DIC system
- Acquisition rate of 0.5Hz
- Measurement uncertainty 3%

1st EPERC International Conference 1-3 April 2019

13

Flanges/window validation

Displaced failure modes -> Experientiens

Windows linear FEA and burst test results	
summary	

	Existing	New	<u> </u>
Window thicknes [mm]	0.85	0.80	to 1.7
Operational pressure [bar]	5	5	
Min. burst pressure [S.F.5]	25	25	
FEA DBA failure pressure [bar]	32	41	
Burst test failure pressure [bar]	66	66	Validated!
Difference (DBA vs tests) [%]	52	38	

- 13x the op. pressure (5bar)
- 2 x the design pressure (25bar)
- Why the unexpected failure modes?
- Plastic deformation solely responsible for the observed effect?
- Is there an inconsistency in the simulations?

1st EPERC International Conference 1-3 April 2019

Benchmarking

Study of the linear regime → DIC to linear FEA benchmarking The agreement is good, specially for the new design → Linear FEA ok... 0.0036154 Max 0.0034 0.0032 0.003 0.0028 0.0026 0.0022 0.0022 0.002 0.0018 0.0016 4.40E-03 4.00E-03 3.60E-03 FEA 35bar 3.20E-03 2.80E-03 2.40E-03 2.00E-03 1.60E-03 • DIC · DIC 8.00E-04 • FEA • FEA 4.00E-04 Strain [mm/mm] 0 10 20 30 40 50 60 70 80 90 100 Length [mm] 0.0F+00 4.0F-03 8.0F-03 1.2F-02 Strain [mm/mm] 1.6F-02 2.0F-02 Existent design 4.00E-03 64 60 56 52 48 44 40 36 32 28 24 20 16 FEA 3.60E-03 35bar 3.20E-03 2.80E-03 0.0039769 Max 0.0035 0.003 0.0025 Strain [mm/mm] Pressure[bar] 2.00E-03 1.60E-03 0.002 0.0015 · DIC · DIC 8.00E-04 -0.00012598 Min 4.00E-04 • FEA • FEA Strain [mm/mm] 0.00E+00 70 80 90 100 0.0E+00 4.0E-03 8.0E-03 1.2E-02 1.6E-02 2.0E-02 2.4E-02 Strain [mm/mm] 30 40 50 60 Length [mm] 35bar New design

Benchmarking

A look into the <u>nonlinear</u> regime \rightarrow DIC to nonlinear FEA (<u>not based on Annex B</u>)

Window linear FEA, nonlinear FEA and pressure tests summary				
	New			
Window thicknes [mm]	0.80 to 1.7			
Operational pressure [bar]	5			
Min. burst pressure [S.F.5]	25			
FEA Linear DBA failure pressure [bar]	41			
FEA Nonlinear DBA failure pressure [bar]	61			
Burst test failure pressure [bar]	66			
Difference (DBA Linear vs tests) [%]	38			
Difference (DBA Nonlinear vs tests) [%]	8			

- Difference decrease to 8%
- Failure mode closer to burst
- High stress region mitigated
- Displacement in agreement with burst

Excellent fit with the experimental results

Optimization (Rough study. not by Annex B)

Big safety factor obtained → Large margin for improvement!

Reminder: functional spec. -> As thin as possibly achievable means better quality for the particle beam

von-Mises stress at failure (7075-T6 Tensile strength = 504MPa) Thickness of 0.4 to 1.3mm in the periphery.

A possible thickness reduction of 50%! → A study according to Annex B is needed to properly evaluate...

Conclusions

- Method presented based on the EN-13445-3:2014 for the short (and budget restrained) period available
- Design and validation achieved for up to 66 bar. Max operational pressure possible up to 13 bar
- The new design proved to be slightly better for physics (thinner by 0.05mm)
- A high safety factor was obtained due to the nature of the proposed method. It was demonstrated that the nonlinear plastic deformation of the tested subjects cannot be neglected
- The DIC results revealed a good agreement between the linear simulations and the linear region of the experimental results indicating a correct construction of the simulation models
- A "basic" nonlinear analysis showed excellent agreement with the DIC experimental data leading the way for a possible optimization. Preliminary analysis show that the optimization can decrease the thickness by a factor 2
- No statistics were considered. Encouraging results but more tests needed...

THANK YOU VERY MUCH!

